Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Mustafa Odabașoğlu ${ }^{\text {a }}$ and Orhan Büyükgüngör ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Chemistry, Faculty of Arts \& Science, Ondokuz Mayıs University, TR-55139 Kurupelit Samsun, Turkey, and ${ }^{\text {b }}$ Department of Physics, Faculty of Arts \& Science, Ondokuz Mayıs University, TR-55139 Kurupelit Samsun, Turkey

Correspondence e-mail: muodabas@omu.edu.tr

Key indicators

Single-crystal X-ray study
$T=296 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.029$
$w R$ factor $=0.071$
Data-to-parameter ratio $=7.0$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
3-(4-Acetylanilino)isobenzofuran-1(3H)-one

The crystal structure of the title compound, $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{NO}_{3}$, is stabilized by an $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and three $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ intermolecular hydrogen bonds and by $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions. The intermolecular hydrogen bonds generate $R_{4}^{4}(33)$ and $R_{4}^{4}(29)$ ring motifs. These hydrogen-bonded rings are linked via $C(3)$ chains, generating a three-dimensional framework.

Comment

Benzolactones are found in plants and they show several pharmacological effects, such as fungicidal, bactericidal, herbicidal and analgesic activities (Aoki et al., 1973; Lacova, 1973). We report here the structure of 3-(4-acetyl-anilino)isobenzofuran-1(3H)-one, (I) (Fig. 1 and Table 1), as part of our systematic analysis of the structures of 3-substituted phthalides (3-substituted benzolactones).

(I)

In (I), the phthalide group $(\mathrm{C} 1-\mathrm{C} 8 / \mathrm{O} 2)$ is essentially planar, the largest deviation from the mean plane being 0.033 (2) \AA for atom O2. The dihedral angle between the mean planes of the phthalide group and the benzene ring is $54.55(10)^{\circ}$, which compares with $75.58(15)^{\circ}$ in 3-(4-chloroanilino)phthalide (Büyükgüngör \& Odabaşoğlu, 2006), 74.10 (9) ${ }^{\circ}$ in 3-(4fluoroanilino)phthalide (Odabaşoğlu \& Büyükgüngör, 2006a), $62.2(2)^{\circ}$ in 3-(4-bromoanilino)phthalide (Odabaşoğlu \&

A view of (I), showing the atomic numbering scheme and displacement ellipsoids drawn at the 30% probability level.

Received 8 August 2006 Accepted 15 August 2006

3-Substituted phthalides, Part XVII

Figure 2
Part of the crystal structure of (I), showing the $R_{4}^{4}(33)$ hydrogen-bonded ring motifs, with hydrogen bonds drawn as dashed lines. For the sake of clarity, H atoms not involved in the motifs shown have been omitted. [Symmetry code: (i) $-x, y-\frac{1}{2}, 1-z$.]

Figure 3
Part of the crystal structure of (I), showing the $R_{4}^{4}(29)$ hydrogen-bonded ring motifs with hydrogen bonds drawn as dashed lines. For the sake of clarity, H atoms not involved in the motifs shown have been omitted. [Symmetry code: (i) $-x, y-\frac{1}{2}, 1-z$.]

Büyükgüngör, 2006b), 51.7 (2) ${ }^{\circ}$ in 3-(2,6-dimethyl-anilino)isobenzofuran-1(3H)-one (Odabaşoğlu \& Büyükgüngör, 2006c), 58.35 (15) and 54.82 (15) ${ }^{\circ}$ in 3-\{4-[4-(3-oxo-1,3-dihydroisobenzofuran-1-ylamino)benzyl]phenylamino\}-isobenzofuran-1($3 H$)-one (Odabaşoğlu \& Büyükgüngör, 2006d), $78.43(15)^{\circ}$ in 3-anilinoisobenzofuran-1(3H)-one (Odabaşoğlu \& Büyükgüngör, 2006e), 51.45 (8) ${ }^{\circ}$ in 3-(2-hydroxy-5-nitroanilino)isobenzofuran-1(3H)-one (Odabaşoğlu \& Büyükgüngör, 2006f) and 67.78 (14) ${ }^{\circ}$ in 3-(4-ethoxy-anilino)isobenzofuran-1(3H)-one (Odabaşoğlu \& Büyükgüngör, 2006g).

The crystal packing is stabilized by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{O}$ intermolecular hydrogen bonds and a $\mathrm{C} 8-\mathrm{H} 8 \cdots \pi$ interaction (Table 2). The intermolecular $\mathrm{C} 16-\mathrm{H} 16 b \cdots \mathrm{O} 1$ and C6-H6‥O3 hydrogen bonds generate $R_{4}^{4}(33)$ (Fig. 2), and the $\mathrm{C} 16-\mathrm{H} 16 b \cdots \mathrm{O} 1, \mathrm{C} 6-\mathrm{H} 6 \cdots \mathrm{O} 3$ and $\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{O} 3$

Figure 4
Part of the crystal structure of (I), showing the $C(3)$ chains with $\mathrm{C} 8-$ $\mathrm{H} 8 \cdots \mathrm{O} 2$ hydrogen bonds drawn as dashed lines. For the sake of clarity, H atoms not involved in the motifs shown have been omitted.

Figure 5
The packing diagram of (I), with hydrogen bonds drawn as dashed lines. H atoms not involved in hydrogen bonding have been omitted.
bonds form R_{4}^{4} (29) (Fig. 3) ring motifs (Etter, 1990; Bernstein et al., 1995). These hydrogen-bonded rings are linked via C(3) chains (Fig. 4), generating a three-dimensional framework (Fig. 5).

Experimental

The title compound was prepared as described by Odabaşoğlu \& Büyükgüngör (2006h) using phthalaldehydic acid and 4-aminoactophenone as starting materials (yield 76%; m.p. $540-541 \mathrm{~K}$). Crystals of (I) suitable for X-ray analysis were obtained by slow evaporation of a DMF solution at room temperature.

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{16} \mathrm{H}_{13} \mathrm{NO}_{3} \\
& M_{r}=267.27 \\
& \text { Monoclinic, } P 2_{1} \\
& a=4.0243(5) \AA \\
& b=14.3117(12) \AA \\
& c=11.1107(12) \AA \\
& \beta=94.002(9)^{\circ} \\
& V=638.36(12) \AA^{3}
\end{aligned}
$$

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.391 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=0.10 \mathrm{~mm}^{-1} \\
& T=296 \mathrm{~K} \\
& \text { Prism, colorless } \\
& 0.23 \times 0.19 \times 0.14 \mathrm{~mm}
\end{aligned}
$$

Data collection

Stoe IPDS-2 diffractometer
ω scans
Absorption correction: none 7243 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.029$
$w R\left(F^{2}\right)=0.071$
$S=1.04$
1300 reflections
187 parameters
H atoms treated by a mixture of independent and constrained refinement

1300 independent reflections
1116 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.051$
$\theta_{\text {max }}=26.0^{\circ}$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0394 P)^{2}\right. \\
& \quad+0.0165 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.00 \\
& \Delta \rho_{\max }=0.11 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.12 \mathrm{e}^{-3}
\end{aligned}
$$

Extinction correction: SHELXL97
Extinction coefficient: 0.040 (6)

All H atoms attached to C atoms were refined using the ridingmodel approximation, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ for aromatic $\left[U_{\text {iso }}(\mathrm{H})=\right.$ $\left.1.2 U_{\text {eq }}(\mathrm{C})\right]$ and $\mathrm{C}-\mathrm{H}=0.96 \AA$ for methyl $\left[U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})\right]$. The H atom of the amino group was located in a Fourier difference map and freely refined. In the absence of significant anomalous dispersion effects, Friedel pairs were averaged.

Data collection: X-AREA (Stoe \& Cie, 2002); cell refinement: X AREA; data reduction: X-RED32 (Stoe \& Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS2 diffractometer (purchased under grant F. 279 of the University Research Fund).

References

Aoki, T., Furusho, T., Kimura, T., Satake, S. \& Funayama, S. (1973). Jpn Patent 7324724; Chem. Abstr. (1973), 80, 129246.
Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Büyükgüngör, O. \& Odabaşoğlu, M. (2006). Acta Cryst. E62, o2003-o2004.
Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Lacova, M. (1973). Chem. Zvesti. 27, 525-535; Chem. Abstr. (1974), 80, 59757.
Odabaşoğlu, M. \& Büyükgüngör, O. (2006a). Acta Cryst. E62, o4138-04139.
Odabaşoğlu, M. \& Büyükgüngör, O. (2006b). Acta Cryst. E62. Submitted.
Odabaşoğlu, M. \& Büyükgüngör, O. (2006c). Acta Cryst. E62, o4140-o4141.
Odabaşoğlu, M. \& Büyükgüngör, O. (2006d). Acta Cryst. E62, o4142-o4144.
Odabaşoğlu, M. \& Büyükgüngör, O. (2006e). Acta Cryst. E62, o2943-o2944.
Odabaşoğlu, M. \& Büyükgüngör, O. (2006f). Acta Cryst. E62, o3042-o3043.
Odabaşoğlu, M. \& Büyükgüngör, O. (2006g). Acta Cryst. E62, o2558-o2559.
Odabaşoğlu, M. \& Büyükgüngör, O. (2006h). Acta Cryst. E62, o1879-o1881.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Stoe \& Cie (2002). X - A REA (Version 1.18) and X-RED32 (Version 1.04). Stoe \& Cie, Darmstadt, Germany.

[^0]: © 2006 International Union of Crystallography All rights reserved

